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The equations of motion of nonholonomic systems in Poincaré-Chetaev variables [1] are
derived directly from the general equation of dynamics with simultaneous altowance for
all imposed constraints, Their equivalence to equations of motion derived by other me-
thods is proved,

1, The equations of motion of nonholonomic systems, Let us con-
sider a nonholonomic system with ¢ degrees of freedom whose positions are defined by
1t Poincaré-Chetaev variables Z,,..., Z, with p holonomic and g nonholonomic linear
constraints,

As in 1], let X,, X4,..., X1 with the commutators

3

(Xri Xs)-‘-‘-: Z Crsfxx (r=0,1, 0,k s=1,..., & k==n—p} (11)
fe=y
be the displacement operators of the so-called associated holonomic system obtained

by removing all q nonholonomic constraints from the system under consideration ;
s oy Mn and @y,..., ©, are the parameters of the real and possible displacements
of this system; £ is the number of degrees of freedom ; the nonholonomic constraints

are reducible to the relations
! !

M= ) Cllat comr Oy = ) G, (v=Idl ek l=k—q) (1.2)
§=:1 §==}

Here Crst, Cusy Cvo are certain functions of ¢ and I; which depend only on the con-
straint conditions and on the choice of the parameters 1), and @4 of the corresponding
holonomic system,

Then, by virtue of (2.2) of [1] and (1.2), the changes df and §f in an arbitrary func-
tion j(t, Z;) on the real and possible displacements of the nonholonomic system, when
all p -} g constraint conditions are fulfilled, are given by Formulas

1

i
=[Ye+ Iy plan =3 07, (1.3)

s§=1

Here Y, Yy,..., Y are the displacement operators of the nonholonomic system,

which can be expressed in terms of the operators X , and the commutators, i.e, a 4
K 1 A .

. S r=0,1,.., 1
Yo=Xo+ D X (VnY)= Dkl X BXe (210757
v=i+1 t=i v=i1 P
The coefficients in Expression (1.4) are gwen by Formulas

rx(“cr81+ Z Cys rvt"{'“ Z Cur (Cp.gt“f— 2 Cys p.vt)

vl et vl
!

Kls == krgy — fz Cothrg + Y, (cs)— 7Y, (Cvr) (1.5)
=1
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r=0,1,.. 8 s=4,..1
tz=d, L, LU L vl Lk

We can use operators (1,4) to find the equations of motion of 4 nonholonomic system

with ideal constraints and the force function U/'from the general equation of dynamics

N
2 [(m,-u;”-——gg-) Suy - (m,v,-"-—— i-(L) bv, 4 (m,w," —_ :Q—)Gw,] == 0 (1.6)
- u, ar ‘ dury

Here N denotes the number of material points of the system; u,, v;, i are the
Cartesian coordinates of the ith point, which, by the conditions of the problem, are func-
tions of the variables £, Zy,e.., Zn; W', U;'", w,”" are its accelerations ; du,, bv,,
dw, are the possible displacements of a point permitted by all the constraints, and
detined, in accordance with (1, 3), by Formulas

!

! !
du; = 2 o,Y, (u;), bvngz ®,Y,{v), dwy = E o,Y, (wy)

=1 =t =t 1.7
F=1, ..., N) ( )

To this end, substituting (1, 7) into (1, 6), by virtue of the independence of @y,..., Oy,

we obtain N (1.8)
2 m Y () + oY (0) + wl Y (w)] — Y (U) =0 (s=1.,D)
=t

or

N
.l :5;’1 m ('Y o (@) + 0¥, () + Yy ()] — Yo (U) —
- (1.9

N
, AY (u) ,8Y (v) ,8Y {(w,)
mzlml[ul dt : + Uy di ! -+ Wy di J ]= 0 (N=i»"'ol)

Here u’, v/, w, are the velocities of the point defined, according to (1. 3), by

formulas written only for f ==y , ‘ .
u = Yo(u)+ 2 nY, () (i=1,..,N)

From (1, 10) we obtain =1 (1.10)
aui’ » Ql"’ awt' 8§ = 1. aevy {
V@) =g, V)=, Hm)=g- (257 )1
and, according to (1, 3), for the functions f == u;, v;, w; we have
!
dy (f) .
=7, (%) + (Yo, Y+ A (Y Y)f =10 (1.12)
r==i
Substituting (1,11) and (1,12) into (1, 9) with allowance for {1, 4), we obtain
l !
d or ; A
di 5?;:“ Ye ([ -+ U) - gl (kt)st + le nrkral) '5','1""'_"
k {
— (k;,\. +2 n,k;’,v)_(%’—‘w) =0 (s=1,..,1) (1.13)
v=l41 re=t W

These are the equations of motion of a nonholonomic system in Poincaré-Chetaev
variables derived from the general equation of dynamics with simultaneous allowance
for all the constraints imposed on the system beginning at the initial instant, Here 7" is
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the kinetic energy of the nonholonomic system,
N

Ttz My M) =5 55 my @+ 03+ w2 (1.14)
and (@T°/0n.) denote the Expressions =t
N
(if;" ) = 2 my [ud X, (i) + v X (03) + wi' Xy (wi)] (1.15)
o m (=141, k)

Let us show that the (07°/0v,) have the mechanical values of the impulses correspond-
ing to the dependent parameters 1), of (1,2) if I'° is the kinetic energy of the correspond-
ing holonomic system computed without allowance for the nonholonomic constraints or

for (1.2) using Formulas
Ve ) (1.16)
° 1N ’ ’ ! N P
T° = 2 my (w4 vt 4w, i = Xo () + 2 neXy(ug) (=1, N)
i=1 s=1

Here the formulas for the derivatives have been written for uz'only. In fact, from

(1.16) we can obtain, among other things, Expressions (1.17)
Ju.’ v.' S dw,” v:l+1,....k
X (i) = 7111— Xo) =50 Xo(wi) = on <i.=1, o N )

Substituting (1, 17) into (1, 15), we obtain from these relations expressions for the im-
pulses 0T°/0v,.

Egs. (1.13) coincide with Eqs, (3, 14) of {1] obtained by the Chaplygin method [2],
since the kinetic energy 7" in (1, 13) computed from Formula (1, 14), and the function
© in [17] are equal to each other, This can be verified by computation,

2. The equivalence of the equations of motion of nonholonomic
systems, There are at present many methods for deriving the equations of motion of
nonholonomic systems, This often raises the question of their equivalence {3], In this
connection, having shown that the above direct method and the method of Chaplygin
yield equivalent results, let us consider the methods of Appell [4], Hamel [5], Volterra
[6],et al.

Differentiating (1, 10) with respect to ¢, we obtain

! i
u" = 2 MY (u) + .oy v = 2 'Y, (@) +...,
EESY 8=1

!
wl =R Y @)+ U= ) 1)
§=1

Here we have written only the formulas for 2;"} the dotted lines denote terms not con-
taining v, =dn,/dt (s =1,..., ]).

Stipulating that

du” o " dw,” ¢ —
Y e ’ T4y s=1, .1
Y, (”'i)—-wv Ys(”l)—a—,‘]? v Yy (wy) = n (i:=1...., y ) (2.2)

and substituting these quantities into (1, 8), we obtain from (2, 1) the Appell equations
for a nonholonomic system in Poincaré-Chetaev variables,

as
o =Ts(0) (s=1, ..., 1) (2.3)
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Here § is the acceleration energy computed from Formulas (2, 1),

N
1
§= 5 20 my (" - v, 0, (2.4)
i=1
The Appell Eqs, (2, 3) are equivalent to Egs, (1, 13), since computations show that

N (2.5)
s _d ar , Y, (u;) ,9Y (v) , 4Y (w))
ansl = “&2 5“—:—" El my [3{ '_d_im + Uy i + w; C;l : J (‘v= . I)

Moreover, the right sides of (2. 5) become (1, 13), as we can see (*) from (1, 9),
According to Hamel [5], the equations of motion of nonholonomic systems are deriva-
ble from the conditions
ddu, div, , dﬁw
7 "-6!11 =0, e dv;" =0, —-a}-—- — 0wy =10 i=1,.. N) {2.06)
established for all Cartesfan coordinates of points of the system (**), and from the Bel~
trami equation, which can be written in Poincaré-Chetaev variables as
k
20— U)=0 (2.7)

The operations d and § are employed here without allowance for nonholonomic con-
straints, i, e, according to (1. 5) of [11; 7°° is the kinetic energy of the corresponding
holonomic system computed from Formulas (1,16), In Hamel’s method nonholonomic
constraints (1, 2) are allowed for only after (2, 7) under (2, 6) has already been reduced
to form (3,2) of [1], This implies the natural equivalence of (1, 13) and the equations
obtained by Hamel's method, since the latter can be reduced to (1, 18) or to the equiva~
lent Eqs, (3.14) of [1] by converting to the kinetic energy 7 according to Formula (3, 8)
of [1]0

For example, let us consider the case ¢,s = ¢y =0 or 1y, =0, @, =0 (see
[5 and 3]). The Hamel equations are then (2.8)

[
d (r)',w \d 7 \ “+ I)Tu
' (a’ﬁ;‘)nv:o’“ [‘\ﬂ(,Q + U)}ﬂ,:{) - }J (Cﬂal -+ S‘l "h( vsf} ( )ﬂ,,:——n: 0

t=1 r= Iy
(s=1,.., 1)
Converting to the kinetic energy I" or @ according to Formula (3, 8) of [1] and making

the substitutions ,gpo T ©
(7o), =7 TNamo= X, () G=1,...1) (2.9)

in (2. 8), we obtain the special case of Eqs, (1 13) when Cvs =¢Cyy =0

d 8T ar
g 671 X (T + U) - §1(003t + 2 21 LN ral) am -
(2.10)
— C v v aT = §== 1, sevy I
3.’“( ” +,2_’1n" ”‘)(an ) o ¢ )

*) The problem of equivalence of the Chaplygin [2] and Appell {4] equations is discussed
by M, I, Efimov in his candidate’s thesis "On Chaplygin's Equations for Nonholonomic
Systems" (Institute of Mechanics, Akad, Nauk SSSR) and by Shagi-Sultan in (7],

**) These conditions are justified for nonholonomic systems in {5,6 and 8- 10],
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In [6] Volterra derived the equations of motion of nonholonomic systems from the
Beltrami equation and conditions (2, 6), defining the operations d and & asin(1,3),

i {
d ar do T _
gl(ﬂ. {:“-i‘t"—“"ana ""'"Yc(T+ U):l + El (#-—-—61‘],) -a—n—l-— (2.11)
1 i i
=1 s“‘l =1 r==

K I
D (Tt D ki) Xo(w)] =t m (242)

v={4+1 r=1

Here T is kinetic energy (1, 14); Expressions (2, 12) for v; and w; are obtainable in
similar fashjon, Following Volterra, we multiply (2.12) by m,Y, (4;), m;Y, (v;),
m;Y , (w;),sum over i from 1 to N, and solve the result for do,/dt — 8,

! t
ad — by = — E W, (a05t+' 2 "'lrarsz) (t=1,... 1 (2.13)

@t = “

Substituting (2, 13) into (2. 11), we obtain the Volten'a equations in Poincaré-Chetaev

variables H
d 67‘
d‘ n, Y (T + U) Z (aou ‘+‘ 2 nraral)"“““' =0 (s: 1' a4 l)
t-. 1
Here 11 N (2.14)
Orgt = Forgy + E krsv yl a;tl Z my [V () Xy (uy) +

v=l41 k=1 i=1

SIS SCIEE TS ) N Al B CR L0
where akt is an element of the inverse of the matrix whose elements are the coefficients
@, of the products 1,1); in the quadratic part of the kinetic energy T (1.14),

The above derivation of Eqgs, (2,14) cannot be considered adequately justifiable for
nonholonomic systems, since, generally speaking, (2, 13) may not be a solution of system
{2.12) because of its indeterminacy (this was noted in [6 and 3}), In fact, substituting
(2, 13) into (2, 12),we obtain the following expression for u; (and analogously for vy and

wy ! t N
Xo(ug) = 2 Y, (@) D) a2y my [V (w) Xo (w3) +
t=1 k=1 =1
FY @)X )+ @)X (SR @ae)

These conditions are not fulfilled, for example, in the case of a hoop (see Section 3),

Nevertheless, Eqs, (2, 14) are valid for nonholonomic systems (this fact was noted in
[11]), since, despite nonfulfillment of (2, 16), the operation for solving (2, 12) by the
Volterra method and the operation of multiplying (2,13) by 07/dv, are relatively
inverse for Eq, (2.11),

The validity of Eqs. (2. 14) can also be verified as follows, Substituting (1, 10) into

Z my[u'Y (u) + v'Y (v) + w0V (wy)] =10 (2.17)

i=1
and solving them for 1), we obtain
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-y T - .
= Z} a@ :‘——-——»—- amag  (k=1,.. 1) (2.18)
t-1
Here @4 are the coeffzczents of 7, in the linear part of the kinetic energy (1. 14).
On substituting (1. 10) and (2. 18) into Expressions (1, 15), we obtain

H ! N
(it) = ?—J g’z a};}?_g m 1Yy (u) Xy (ug) -+

o, I e |
+ Y]\- (U;) X\, (Ut)—*- Yk (w,) Xy ('ll),*)] (V:l'*‘ir--n k) (2.19)

By virtue of (2, 19), Egs, (1,13) in notation (2, 15) coincide with the Volterra equations
(2. 14), which proves their validity for nonholonomic systems,

The equations of Ferrers [12] for a nonholonomic system with { degrees of freedom
defined by 3N Cartesian coordinates Z;, Y;, 2;, subject to smooth nonholonomic con-
straints by virtue of which the velocities Z;", ¥;", i can be expressed in terms of some
{ unknowns 0.7, ..., 0,

L L a (2.20)
z = 2.2 a0, ¥ = >.J b0y, 2/ = 2_: ;0 =1 ..,
=1 8g==1 "s=}
are of the form {‘)
d or aly
'&T"a‘é:f"'zm(xxals +J:b:e —}—ZC;B}—..(,. (s:i,...,l) (221)
i=1

Here a;,”, b;,", ¢;, are the derivatives of a;,, by, ¢4 wnh respect to ¢; 3/00, are
the operators N

* 3
&Gs :—;-1 (ais 31' + by = 33] + Cia 5 o1, ) s=1,..., 1) (2.22)
By virtue of the fact

{
da, ey O, e,
a,' = §} 20/, b= 2 0 a= X0 (2.23)

r=x rel =i 0,
{ 1
- 2-’ %ir 8, oy, - 2 ab,, 6.’ 9z’ . Z\ ac:r 0,
0, 00, B, T by
re=i r=1 r=1

(ros=1%,...,5 i=14,..,N)
Eds, (2.21) can be reduced to the form of (1,13),

%590_7’:”3“"*‘3)—-28 Z[( %)gg+

fe=
; ok ‘ob .ar° dc. de. o
s e VO is i — .
+ ("er %, )%' + (06,- 90, ) azz’} =0 (=1...0 (229
N

o i s ¥ 15
T 272 mg(z + ¥ + 24%)

i=1

*) In [13] Appell investigated the case where 8, are the true generalized coordinates of
the system,
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Egs, (2.24) in generalized coordinates were obtained in [14], They can be generalized
for the case of Poincaré-Chetaev variables by considering a nonholonomic system de-
fined by n variables zy,..., T, with n—Fk holonomic constraints used to construct
system (1,1) with & — | nonholonomic constraints, by virtue of which the parameters
Nyse-ey Np and @y,..., O can be expressed in terms of [ independent auantities 0,”

s l
80, in the form l A
= 2 by + o O = i eusdD, (v=1,...,k (2.25)
et s=1

Now, taking §_’, 80, as the parameters of the real and possible displacements of

the nonholonomic system, instead of (1, 5), (1. 7) and (1, 13), we obtain

K k
Yo = XQ + Z CVQX\;, Ys = Z CvsXv (Sz'i, R (2.26)
N ;::1 ve=l
Kpa = 2 Cpn (("r}w + Z ‘*"f;'(7~rytv> ' krw = Kew + Yo (Con) + Yy (Cor) (2.27)
=i ot
g (r=0,1,.. . L=t . Lhv=1..,4k)
K I3
{ a7 . * Y on st a7 g ¢
Ti’—t‘ (‘)‘6;‘7 —Y, (l + U) - g;; (lcusv -+ r%;. Or krsv) <‘5}?> =0 (s==1,...,10) (228)

Here 7'° is the kinetic energy computed from Formulas (1, 16),

Edgs. (2.28) subsume as special cases Eqs, (2,24) in Cartesian and generalized coordi-
nates, When (2.25) are of the form (1,2), Eqs, (2.28) can be reduced to the form of
Eags, (1. 13), which implies their equivalence,

3, Example, Letus consider the motions of a hoop defined by the six variables
8,9, @, & v, { under the holonomic constraint {13}
[ — asinh =0 (3.0
and the nonholonomic constraints
£ — asinpsin 00" 4= acosypeos ' + acospp’ = 0
1 4 acosyp sin00” - asinPpcosb - asingp’ = 0 (3.2)
Taking 0,, ¢, §, 0, { as the Poincaré-Chetaev parameters, and the projections p,
g, r, of the angular velocity (defined in [13]) and &', v as the parameters of the true
displacements of the holonomic system corresponding to the hoop (without allowance
for constraints (3,2)), we obtain
M=p=40, p=g=yP'sind, Ny=r=ypcosd+¢, M=§ n=1 (3.3

9 0 a ! 1 4 a
XYo=F K= ggtacosogr s Xo=grgay— 805y

a a a
Xsrz:;;‘;, X‘='¢7€’ X5=g,;i‘ (3.9

The commutators of operators (3, 4) with the exception of
(X1, X)) = —ctgh X, 4 X,
are equal to zero,
Nonholonomic constraints (3.2) reduce to (1,2) in the form
1, = asinysin Oy — acosPn,, 1, = —acosbsinGy; —~ asinyr, (3.5)

The operators of the displacements of the nonholonomic system of the hoop are



On the equations of motion of nonholonomic mechanical systems 843

a
Yo=-§-—, Y = +asm1psm9-5€--—acosxpsm0———Lacmo Z; (3.6)
1 17}
,xm—ﬁ—ctgew, Ya-matp-—-acoswaa —asiny 5
Here .
(Ya, Yg):‘«‘—ctg()Yz"‘-Yt. (Ys, Ys)=a.sm\p . acnsq)X6

sin@ ¢ s8ind
The kinetic energy T, T° and the force function U are given by [13]

T=1:((A+a)md+ An - (C +a)ns'l, U=—agsind

To =1/ [(4 + ¢*cos* 6) m? + Ana? + Cma? + né® + nell @7
Equations (1, 13) yield
(4 + a®)ny’ — Actghny® + (C -+ a®)n,ny - ageosd = 0
Any’ 4 Actglnn, — Oy = 0, (€ + a¥m —a*mn; =0 (3.8

In [13] these equations were derived from the general theorems of dynamics and from
Appell's equations,

Substituting (3, 5) into the function 7° (3, 7), we obtain the expression for & given in
1. 8 =1/ [(4 + & + 4ng? + (C + a¥ny'] (3.9)

This expression coincides with the expression for 7' in (3, 7). so that Eqs, (3, 14) of [1]
also yield (3, 8),

The acceleration energy for the hoop is

S =12 [(4 + a®M'? + Any> + (C 4 a¥)my'? + 2 (dctghn, — Cng) ()’ — mgmi’) —

— 2a%n, (" — M) + ... (3.10)
Here the dotted lines represent terms not containing ', n,’, n,'.
By virtue of (3, 10), Appell's Eqs. (2. 3) also yield Egs, (3. 8).
The Cartesian coordinates u;, v;, w; of the ith point of the hoop can be expressed in
terms of the chosen variables,
= § 4."z; (~—cos 0 sinp sing -} cosp cosq) -} y; {~—cosOsinycosp — cos0sing) -4 z;5inbsin
vy = 1} - z; (cosOcospsing - sinycosg)-} y; (cosBeosycosq — sinysing) — z;sinbcosy
w; == {, -}- z;5in0sing - y;sinfcosg 4. z;c0s0 (i=1,2,..) (3.14)

Here &, y; z; are the coordinates of the same ith point in the system whose axes
are rigidly attached to the hoop and are its principal axes of inertia,
Commutation relations (2, 6) for u; and v;, w; in Hamel’s method yield

&
dw
2 ("" — 6"].) X, (u;) + (@ — @am) [ctg O Xz (u;) — X3 (u)] =0 (3.12)
Bz
(i=1,2,..2
By vutue of (3. 12), Beltrami Eq, (2. 7) for the hoop becomes
y d ar° o — are AT -
Z @ [dt oy, — X (T + U)] - (O1m — oum) (ctg O dna) =0 @13

=1
Wwith allowance for the nonholonomic constraints, this equation yields

d d /
g -} acos?0) W1 4-asinOsin 1]:-;}:3 —asinfcos Q}ff—:? -+
-+ a?sin G cos O — Actg Ong? + Cmans +agcos0=0 (3.14)
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d d d
i Ane + Atz Oy — Cmme =0, 7 Cms —acos - d'h ~asiny _Tl__ =0
Substituting (3, 5) into these expressions, we again have Egs, (3, 8).
Relations (2, 12) for u; (and ¢, w;) become
3
1o
Z (1;,7’ — 1, ) Y, (u) + (oM — 0gmy) [ctg 8 Y (ug) — Ya (ug)] +
8==|
asin acosyp . o ar
- (@M — @M} [ Sif (;3? Xe(wy) ‘i“ sin U X ("s)] =0 (i=1,2,...) (315

Making use of (3. 15) without solving them for dw, / dt — bm,, we can reduce Beltrami
Eq. (2,11) to the form

" ’
: d JT or ar
2 0, {—&_ o, —Y (T +U)J-—-(mmg—-mmx) (ctg(} oM 3_1?3)”
LY
C asing/oT° | agos¢/oT°
= (005 — @57) [— smo (ﬁ;) smo (dna)] =0 (3:46)
By (3.7), the latter again gives us Eqs, (3. 8).
Wishing to verify conditions {2, 16), we obtain
a sin P a cosw a
i) g =smer NI, = —smer N@Wzya=o0
(i = 11’2‘ .. ')

These relations are not fulfilled, since a 5= 0.
However, Eqs, (2. 14) nevertheless yield the correct equations of motion of the hoop,

In fact, solving (3. 15) by the Volterra method, we obtain

G133 = —ag; = -ctgh, 133 = —agy = —1
a  siny a cosy
G == —Gm=— T 5ngp miY1 () + 7737 simo meY3(v)
LESTI T f=31,%0,
Qypy == = Gggg == ~= -.?l_ -Sb—l:-&l(l; 2 mYs (4g) 4 — :1 (;(::\g 2 ’"tYI ()
. ”14
Q33 == = Ggpq = =~ a sin ‘b S‘ miy3 (u‘l) + c __: 5] (‘::Zig Z m‘Y, (vi)

2 si At
C+a smi)isl'2 .
Substituting these quantities into (2, 14) and recallmg that
or° __ 2}
myuy, Z my’
dm i=1.2.. Bn, t==1.3...

we obtain (3, 8), i, e, the equations of motion of the hoop,
Conditions (2,20) and Egs, (2.21) for the hoop are

3 3 3
ul =3 nYsluy), = D nYe),  w'= > naYs (wi)

8=1

(=12..)

=1

d T O , dY (ug) ,dY 4 (v3) ,dY 5 ()] _
@ Zm{ [“i (';‘ Y o Tw T =Y, (U} (s=1,2,3)

i=1.2,...
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By virtue of the relations

3 3
el = 5} ¥, Yo () Yelw)=3) nYa¥, (@) (1=1,2,3 i=1,2,...)

r=1 r==]

the above expressions can be rewritten in the form of (2.24),

3
d ar aT° 177_" '
i am, rz==1 ” ialz.ﬂ,.., L’"i' Fr Yo uit gz Ve Yol oi o+

are , _ .
+ g (Vr Yy ] =V (T--U)  (s=1,23 (3.47)

Substituting (3,8) and (3, 7) into (3, 17), we again obtain (3, 8), Here

1 !
=5 2 my (" 4 2% - w;'?)

Aot

The author is grateful to V, V, Rumiantsev for supervising the present study,
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